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Abstract

Mario Kart is often seen as a game of luck, but perhaps the most intriguing element

to arguably the most iconic racing game of all time is how quickly one can drive

on the race track. This is not just meant as a comparison of one vehicle’s velocity

to another, but rather a contrast of techniques and strategies used by players to

complete laps as quickly as possible. Attempting to drive tracks as fast as possible

has been around ever since the birth of the game, and with that in mind, I aimed to

create an optimal strategy which would allow us to ultimately calculate one such

optimal path around a sample race track.

We began by researching the intricacies of the game, and trying our best to

mathematically describe observable behavior. The amount of essential mechanics

and physics that needed to be accounted for, along with the data to be collected

was practically boundless. This involved creating new vocabulary and models

to fully depict all possible actions, along with a preliminary understanding of

geodesics and weighted planes. While originally it was planned to be much more

involved with machine learning, the project morphed over time into the creation

of a mathematical method to properly optimize driving. Much of this required

data was not obtainable through browsing the internet, which resulted in extensive

computational analysis to produce metrics and data that was integral to this project.

Some of these techniques involved data-mining game code, emulation of the game

to a laptop, creation of code to display data live through emulation, scripting,

v



TASing, modeling, and much more. Ultimately this was all done in an endeavor to

not only observe our vehicles behavior, but describe it mathematically.

Compiling this data took an extensive amount of time and effort, which un-

fortunately left not as much time as expected for the mathematical aspect of this

project. Unfortunately not all of the work I previously researched was able to

be implemented, but that was to be expected from such a large scale project. By

the end of this venture, I managed to create an upper-bound path and time for

the first straight away and turn, but also defined a methodology that could be

replicated on any possible turn to find an optimal path. Should I have had more

time, the implementation of a rudimentary Monte Carlo algorithm or potentially

reinforced learning in the long term could have been created to truly optimize

the mathematical models presented, as realistically you can only go so far into

this branch of mathematics without going into incredibly complicated and tedious

math.
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CHAPTER 1

ElementaryMathematics of Shortest Paths

1.1 Geodesics

One of the primary focuses of this project is trying to find optimal paths in weighted

planes. We will dive into more of what each of those individual terms means later,

but for now we can start by thinking about shortest paths. On non-weighted plane,

a shortest path is synonymous with the quickest path, as well as the optimal path.

This is rather simple when dealing with planes, but due to the complexity of our

scenario we will have to expand into the realm of geodesics.

When trying to find an optimal path for our vehicle, we can immediately make

comparisons to geodesics. A geodesic is a length-minimizing curve between two

points. Normally in Euclidean Geometry it is just a straight line between the two

points, but when referring to geodesics it is usually implied to be relevant in 3

dimensions. A common example is the geodesic lines on a sphere. As seen below

in figure 1.1, length-minimizing curves are sketched out between points to indicate

the shortest path that can be taken to each point from each point. Each of these we

could define as a geodesic.

While this is a rather basic example, it does not only apply to spheres. The

idea of geodesics applies to the vast majority of surfaces, with some other notable

1



2 1. Elementary Mathematics of Shortest Paths

Figure 1.1: Geodesics on a sphere

examples revolving around Möbius strips, tori, cones, and saddles. If you want to

find a geodesic for the sphere in figure 1.1, we can calculate our geodesic by first

identifying the greater circle which passes through our two points. For example, if

we want to identify the geodesic between points A and C, we would find the circle

AC that passes through both the points and is a circumference of the sphere. From

there, we know that our geodesic b lies on our circle AC as an arc. This we could

then conclude is the shortest path along the sphere between points A and C. This

should hopefully give a decent intro determining rather simple optimal paths in

3-dimensional space, but for our project we will only be focusing on 2-dimensional

space.
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1.2 Weighted Planes

Once again going back to Euclidean Geometry, it could be easy to assume the fastest

path between two points is just a straight line Hershberger and Suri [4]. However,

this changes drastically in a weighted plane. We can not assume that the fastest

path for our vehicle to drive is a straight line between our beginning and ending,

as it would likely violate several of the rules we need to follow within the game

(for example, we cannot go through walls). We can imagine our course we need to

drive on as a plane, and then subdivide this plane into weighted sections. Weighted

means that there are modifiers that impact or inhibit the velocity and travel of

our vehicle. For example, one section could have a modifier of 2, while another

has a modifier of .5, and another has a modifier of 0. Our optimal path we could

define not necessarily as a straight line, but rather the shortest path calculated via

weight. It is often the case that the shortest weighted path is not the shortest path

by distance.

Figure 1.2: Real world example of a weighted plane Chen et al. [2]

As seen in figure 1.2 Chen et al. [2], we have a very illuminating example for



4 1. Elementary Mathematics of Shortest Paths

how this concept of subdivided weighted planar paths may work in a much easier

to comprehend scenario. Say we want to walk from the vertex labeled “START”

to the vertex labeled “GOAL”. Our objective is not to solve the shortest path via

Euclidean distance, rather find the shortest weighted path. Let’s imagine in this

example it’s incredibly slow to walk through trees as it is a remarkably dense set of

trees, and swimming is significantly slower than running. It would actually take

much more time to take the direct path to the goal than going around in the sand.

Figure 1.3: Optimal path of figure 1.2

The most optimal path would be the one marked in green on figure 1.3, not

the shortest distance path marked in red. This is because our path in red not only

goes through the slow tree section, but also through a giant section of shrubs which

would be sure to slow us down whereas the roundabout path goes through no

difficult terrain whatsoever.

Now that we have illustrated how the problem works in a more basic sense, let’s

mathematically define and explain everything in a more rigorous manner. When we

are supplied with any straight-line planar polygonal subdivision (P), we can further

divide P as a set of various faces, edges, and vertices with each edge connecting

two faces. Faces also may only connect at a shared edge or vertex. Edges must be

closed line segments, and their endpoints must be vertices. If some edge e connects
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faces f and f ′ such that it is oriented with f on the right, then we can denote e as

the following:

e =
⋂

( f , f ′)

Furthermore, if there is some undirected edge e we write:

e = f
⋂

f ′ Mitchell and Papadimitriou [7]

We were provided with two significant points in our earlier example: s (start)

and g (goal). Each of our faces also has an associated weight a specifying the “cost

per unit distance” of traveling in that region. Our final objective then is starting

at point s, we must find a path in this subdivided plane that minimizes some total

cost function. Referring back to Figure 1.2, we can hypothesize that sections such as

water or trees may have a larger "cost per unit distance" than something like sand, as

sand is much easier to walk through and easier to traverse quickly than something

like a thick forest or lake (this is very subjective I reckon but for the example let us

just assume this is true). This mathematically explains why our shortest Euclidean

distance is not always our most optimal, or shortest/least weighted path.

1.3 Trajectory Planning

Topology can also play a role in the creation of our optimal model for our vehicle

to drive on a course. The first step to design a race driver model is represented

by trajectory planning. What we call our optimal trajectory is the trajectory that

allows the vehicle to obtain the lowest lap time. One good example of a model was

academically described as follows:
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Our robot A is similar to a car-like vehicle moving on a planar environment. Its body is a

rectangle supported by four wheels: the two rear wheels’ axle is fixed to A’s body and the

two front wheels are directional. A position of this robot is given by a configuration

(x, y, θ,K), where (x, y) are the coordinates of a reference point R of the body, θ is the

orientation of the body (i.e. the angle between the x-axis and the main axis of A) and K is

the instantaneous curvature of R’s curve and represents the orientation of the front wheels

Scheuer and Laugier [8]

We can then replace a lot of the variables in this model to apply to our potential

scenario. Our variables x and y can remain the same as we are also projecting

our vehicle A onto a planar surface, along with angle θwhich also represents our

vehicle’s angle from the x-axis. However, K would not represent the orientation of

the front wheels of our vehicle, rather just the instantaneous angle for the velocity.

With this fundamental understanding of how our vehicle would be modeled, we

can now try to grasp further understanding by applying further constraints to our

model.

1.4 Local and Global Planning

One of the most challenging aspects about forming weighted paths is analyzing

each subdivision and assessing them in a piece wise manner. Not only does an

optimal path have to manage each subdivision well at a local level, but it also has to

properly assess the global layout of the plane. These two perspectives are referr4ed

to as local and global planning Asadi and Atkins [1].

Mathematically speaking, the path planning is performed using something

called a local planner. Local planners are associated but contrasted with a higher

level method to obtain the global planner. The local planner does not take obstacles

into account, it only searches for the shortest, feasible, and smooth path linking
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both configurations. two configurations, while the global planning deals more with

collision avoidance with obstacles.

Figure 1.4: Basic examples of local planning for optimal paths Scheuer and
Laugier [8]

As seen in Figure 1.4, we have two fundamental examples of local planning.

The path of our vehicle can be seen as the solid curvature path, with qa and qb being

our starting and ending points respectively in each example. While the polygon for

all possible paths is not shown (the race track), we can see where each turn centers

around. Using this knowledge, we have found a path for our vehicle that takes

each turn as tight as possible, along with starting each turn at an optimal angle.

Due to the context of this project, we will be focusing primarily on local planning

as attempting to calculate even the smallest of sections would require substantial

global planning.

Even so, these local planning sections will have many more complications than

it may seem. For example Figure 1.5 shows how paths have to accommodate for

the size or what is commonly referred to as the hitbox of our vehicle. However, we



8 1. Elementary Mathematics of Shortest Paths

could just remodel the track or polygon for our path with such little obstacles to

achieve a similar effect without delving into global planning.

Figure 1.5: Motion polygon visualizing the constraints of our vehicle Scheuer and Laugier [8]

1.5 Mathematical context

While the mathematical research presented here is not incredibly rich with detail,

this was largely due to the amount of time and effort required to collect data

manually when I had very little guidance or understanding of what needed to

be done. That being said, while it is quite brief it certainly explains most of the

upper level mathematical concepts that will be utilized implicitly and explicitly

throughout the rest of the thesis.



CHAPTER 2

Applications

2.1 How doesMario KartWii work, and how can we

represent it mathematically?

Now that we’ve prefaced much of the strategies for finding shortest paths, we’re

now going to attempt to apply it to Mario Kart Wii. In Mario Kart, we will attempt

to create an algorithm which identifies not necessarily the shortest length path, but

the shortest weighted path. In Mario Kart Wii we will be playing in the time trials

mode, which gives our character 3 mushroom items which allows it to temporarily

increase its speed and drive through offroad. The end goal in time trial mode is

to complete a lap around the track 3 times as fast as possible. This will involve

our character moving in different methods in the game, and structuring our path

around it. While finding a shortest path around a circuit would be rather trivial,

implementing constraints on the shape of the path through vehicle movement and

computing length as a function of time traveled as opposed to distance adds a much

further step of depth for the game.

We can classify Mario Kart Wii as a deterministic game, which can be defined as

repeated actions having consistent results Solan and Vielle [9]. A good example

of this is that if we start at a specific position and angle on our race course and

9



10 2. Applications

only hold down the gas button for x frames and it travels y in-game units, it will

consistently travel y in-game units in those specific circumstances. This is incredibly

important, as that means our mathematics will continue to produce the same results.

In a racing game, one of the most important aspects is the different methods of

movement. Below are several of our primary methods:

• Wheelie

• Drifting

• Miniturbo

• Mushroom Boost

• Boost Panel

These are all of the classifications of actions that our vehicle can take as we

define them. Not all of them are mutually exclusive, and some of them have several

different methods and sub-methods we will delve into further in the chapter.

2.2 What are we measuring? How are we controlling

our vehicle?

In the scope of this project there are several key things we must take note of. For

starters, the game runs at 59.54 frames per second (or FPS) [3], but we round it up

to 60 just for simplicity sake. This means we can only have 60 actions per second, or

60 unique inputs a second. We can classify an input as any possible combination of

button presses that combine to make an instance. For example, we can press two

different buttons in the same instance such as A and B, but we cannot press up and

down on the joystick in the same instance as it is only possible to have 1 direction on
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the joystick at a time. However, it became clear very quickly that only allowing 60

actions a second would become very limiting mathematically so I decided to allow

a non-finite amount of actions to be made in any time segment. For example, if we

were to only take 60 actions per second our curve would no longer be smooth, it

would look similar to a Riemann sum representation below the curve. Ignoring this

will allow us to mathematically represent vehicle trajectory much more simply. If

this were created into a discrete mathematics problem in a similar method, it would

provide an entirely different set of mathematics to answer and an optimal solution

could be more easily determined through reinforcement learning algorithms where

our reward algorithm would have to do with setting up checkpoints along the track

and only allowing our vehicle certain sets of inputs. while it could certainly be a

valid endeavor, we decided to forgo that in this project.

With that out of the way, let us look more closely at what we can observe at any

given time about our vehicle.

• Location- At any given point in our race, our vehicle will have an x, y, and

z value that corresponds to its location on the track. Fortunately for us, we

chose a racetrack which is entirely flat and has no changes in elevation so we

can neglect to track any location on the z-axis. This leaves us with only x and

y. Using these coordinates we can determine whether or not our vehicle is

driving in the offroad, or next to an object, or on the track.

• Velocity- velocity is one of the more obvious measurements we need to take.

Traveling at fast velocities is obviously more optimal than traveling at slow

velocities (assuming all other variables are constant), so measuring velocity

and determining where we can drive faster is going to be very important.

• Direction- This is incredibly essential for our vehicle. Without direction we

do not know where we are going to be in our next observation, and since
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our direction can be modified instantaneously with inputs it is even more

important that we measure this intently.

• Button presses- This is pretty self explanatory, but it is important our vehicle

knows exactly what buttons were pressed when we control it.

• Stick position- This is actually a bit more complicated than it seems, and we

will get more in depth with it later, but in essence there are several different

directions the stick can be put to change the trajectory of the vehicle. This

observed variable goes hand in hand with direction.

• Miniturbo charge- There is an arbitrary value named Miniturbo Charge which

increases while in a drift until it hits a value of 270 [3]. It can then be "released"

to get a slight momentary velocity boost. While they may not seem like a large

amount, every little value counts when we are trying to optimize velocity.

By keeping track of this value we can determine the exact instant that we

can release our miniturbo, and if the optimal path involves us doing two

miniturbos back to back (often referred to as a chain miniturbo) then we can

do it as fast as possible by monitoring our miniturbo stat and releasing it on

the first possible frame.

• Mushroom boost- When a mushroom is used, it raises our character to 117.81 u
f

for exactly 90 frames, while also making us immune to the effects of offroad for

those 90 frames [5]. By noting how many frames we have in our mushroom,

we can determine exactly how many frames we have left with top velocity

and offroad immunity. This is incredibly important for optimizing our path in

offroad sections, specifically through certain shortcuts.

• Mushroom count- This is simply how many mushrooms we have left. In
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reality we are only using 1 each lap so this may be redundant, but it does not

hurt us to take it.

This should be the entirety of what we monitor for our vehicle, but there still is

much to learn about several of these as they are much more complex than they may

first appear. Finally, all measurements of velocity will be in u
f or u

s throughout the

rest of this paper. Frames are simply 1
60 th of a second.

2.3 A deep dive into game mechanics

For such an old game, there is a surprisingly large amount of strategy to optimize

driving to an incredible level. We will begin by looking into each of these techniques

so we can eventually utilize some of them ourselves, as well as familiarize ourselves

with common terminology.

2.3.1 Acceleration

There are a various amount of ways a vehicle can accelerate and decelerate in

this game. However, the magnitude of acceleration changes depending on the

exact action. It is important to know exactly how these interactions change vehicle

velocity, which are all displayed in figure 2.1.

2.3.2 Boosts

The most common way of accelerating beyond normal speeds is through the use of

a boost. There are several different types of boosts, all of which are outlined below

in figure 2.2.

These boosts do not stack acceleration however, so when the vehicle is acted
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Figure 2.1: All Acceleration Types and Quantities [5]

Figure 2.2: Types of boosts and their consequences [5]

upon multiple boosts it simply applies the greatest positive value. A diagram

representing this can seen in figure 2.3.
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Figure 2.3: Overview for boost priority and their velocities [5]

The startup boost, which only occurs at the beginning of each race, is very unique

in the sense that there are many different variations in terms of duration that can be

achieved. Since it will always be more optimal to get the maximum length of boost

we will use the lowest row of figure 2.4 in our calculations, the other rows are there

to provide more context to the reader with regards to variation.

Figure 2.4: Different start boosts and corresponding timing [5]



16 2. Applications

2.3.3 Wheelies

On other way to travel at a faster speed is a movement technique called a wheelie.

When you start a wheelie, your vehicle remains in this wheelie for 180 frames (3

seconds) or until cancel by the user. While in a wheelie, inputting any buttons on

the stick cause it to decelerate significantly. Due to this, it is important that the stick

remains neutral while in a wheelie. As a trade-off, the vehicle’s maximum speed is

increased by 15%. This makes wheelie’s optimal for straightaways, especially very

long ones.

2.3.4 Joystick positions andMiniturbos

There are several different positions that a joystick can be at for any given time. In

fact, there are a total of 225 different positions. Usually we refer to these positions

either on a scale from -7 to 7, or from 0 to 14. In Figure 2.5 there is an example of

exactly how this layout conforms to the stick, with 0,0 being the center.

Figure 2.5: Diagram of the joystick and its input range

When performing a drift a miniturbo will charge up after a certain period of

time, and when you release the drift, you will get a boost from this miniturbo.
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Miniturbos charge at different rates depending on which direction you hold during

that drift. Say you wish to turn right, our miniturbo will be created at the optimum

pace if the stick is held with an x-coordinate between 3 and 7, and slower for an

x-coordinate between -7 and 2.

We measure this rate of charge for a miniturbo numerically. We can use a

miniturbo once our charge reaches a value of 270. When charging in the most

optimal zone, we can charge by 5 units each frame. When using the least optimal

zone, charge only increases by 2 units each frame.

2.3.5 Hitboxes

Like most objects in games, our vehicle has a hit box. A hit box is a geometric

representation for the collision of our vehicle. One example of how this works is

when if our vehicle drives directly into an object (say a wall), the hit box of our

vehicle would collide with the hit box of the wall. This prevents objects from moving

through each other. Properly determining the hitbox of our vehicle is important for

determining exactly how tight we can take our turns on the track.

Much of the code for hitboxes was found by EjayB and Citrinitas [3]. First and

foremost, we can lay out the hitboxes we have to deal with here as there are in fact

several. Each of them come with a center point using x, y, and z coordinates. There

is also a given radius of our sphere. From this data, we can begin to structure what

this hitbox would look like. While the first 5 hitboxes are simple spheres, the later

2 are not. They appear to have very special properties that make it much more

difficult to understand positioning. We can begin however by modeling the very

basic 5 beginning hitboxes.

As for the other two not included hitboxes (Wheel 0 and Wheel 1), we can also

add them to our model but it does not look quite right. Not only are they slightly

below our XY plane, but one also appears to be slightly higher than the other. This
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Figure 2.6: Basic hitbox with only the vehicle body

difference is 50 units. Based on in game representation however, it appears these

two remained unused throughout development so they were probably just remnant

code that was not removed.
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Figure 2.7: Basic hitbox with attached wheels
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CHAPTER 3

Creating a Theoretical Lower Bound

3.1 Theoretical Lower Bound

Now that we have properly analyzed the vast amount of strategy available at our

disposal, we can begin to optimize how we want to drive the track. Our main goal

now is to create a theoretically optimal path for our vehicle, starting with the first

straight and turn. We will then follow this up by creating a methodology that would

allow anyone to calculate a theoretical optimal way to take any turn or straight

on a track. In order to estimate this effectively and differentiate it from a viable

method, we are going to ignore some constraints that we would normally adhere

to. The most important of those being maneuverability and frames. In this lower

bound, we assume not only that our vehicle can turn any angle instantly, but we

also assume that it can do it faster than a frame. What this means is that our vehicle

will always be as tight to the turn as physically possible.

Immediately there are many different possibilities for how to start this task.

We chose to begin by determining a path sequentially, starting with the beginning

straight away and the first turn. However, due to the nature of this game, should

we make one mistake early on and realize it later, we would have to go back and

redo all of the calculations from that point onwards since relative positioning and

21
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velocity for our vehicle will be permanently changed. With that being said, lets

begin by analyzing the very beginning of the race.

3.2 Section 1: The First Alignment and Straight

3.2.1 Starting Position

As is defined with all paths, we must have a start and end point. While the end

point will be anywhere along the finish line that crosses the checkpoint, the start

point is stationary and we are to assume it cannot be changed. While it is technically

possible to change this start point through a technique called a start slide, we are

choosing to forgo that for now as positioning along with rotation will be altered

in a way that is very hard to quantify. Furthermore, the character and vehicle

combination we are using (Daisy on the Mach Bike) benefits almost nothing from a

start slide (calculations have put it in the past to be less that 2 milliseconds), so if

we so decide we can just remove 2 milliseconds from our final time as it is a lower

bound after all.

Alas, we must find out what our exact starting position is. Using the emulator

and a very helpful position code, we can see determine our exact starting coordinates.

As seen in figure 3.1, we can see our starting position on the course is approxi-

mately (−14720, 1055.2,−2954.7). It is important to note that for whatever reason the

vertical access is displayed as the y-axis in our game, not the commonly used z-axis.

When properly adjusted, this coordinate corresponds to the point in the modeling

software Blender shown in figure 3.2. Keep this in mind for all future references.

Not only does this make logical sense, but it also properly corresponds to the

image we received the coordinates from. This means that we have an effective way

of converting our vehicle’s position within the game to a position on the model

within Blender. With this now verified, we choose to assume all coordinates we
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Figure 3.1: Starting position and its coordinates

receive from the game are legitimate and can be converted into our model, as well

as from our model into the game. We can also verify this assumption with a fair bit

of other software such as Lorenzi’s KMP editor which also gave us coordinates on

the same system when placing KMP objects in the model (such as pipes)

3.2.2 Starting Alignment

However, our next is the task is much more challenging than the first. We need to

determine how we align, or in layman’s terms angle ourselves at the beginning.

Our main goal of this is to hop over as much offroad as possible. This is because

logically we want to start the turn as far to the right as possible, as it makes the total

distance for the turn shorter. As seen in the figure 3.3, there are 2 alignments we can

immediately analyze. The first of which is the line on the right. While it certainly

would result in a shorter total path for the first turn, it also goes above the offroad

which our vehicle is not allowed to touch. If we can verify our vehicle can hop over
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Figure 3.2: Starting position within Blender

the offroad at the start of its drift, it would lead to a much faster turn and shorter

path than our secondary possibility, which just drives around the offroad.

There are several ways we can test this, one of which is to find exactly how many

frames a hop allows our vehicle to stay in air. While this would help, it would

be more difficult to calculate a total distance traveled in air due to the vehicle’s

deceleration. The method we settled on was to just record the exact distance a

vehicle travels from when it starts the hop until it lands. Once we determine this

value, if it is larger than or equal to the distance our vehicle needs to travel over the

offroad, the right most path is our optimal alignment. However, if it is too short
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Figure 3.3: Possible first alignments. Red lines represent possible optimal trajectories for our vehicle

then we can calculate exactly how much offroad we can cut offwith the hop, and

plan a route accordingly which cuts off as much offroad as possible.

We measure our distance by aligning our vehicle towards the turn at full speed

in a wheelie, and then initiating our drift. We do not immediately hold a direction

down to maximize airtime, and due to the constraints we removed in order to

calculate this lower bound this is perfectly viable for determining the distance

traveled. Once this was setup, we recorded the hop and then looked at the frame the

vehicle began to hop, and the frame on which it landed, and compared coordinates.

These reference images can be seen in the figure 3.4 and 3.5 below.

From this, we can determine our starting coordinate is (−13033,−11875) and our

landing coordinate is (−12611,−13158). Using a simple distance formula, we can

calculate:

D2 = (−13033 − (−12611))2 + (−11875 − (−13158))2
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Figure 3.4: Frame 1 of hop

Figure 3.5: Frame 1 of landing from hop

D2 = 4222 + 12832

D2 = 1824173

D = 1350.6

We have now determined our vehicle can travel 1350.6 units in the air from start

to finish. If we are to determine if this is enough, we have to model our path in

Blender and determine if the line segment over the offroad is less than or equal to

1350.6.

According to our calculations in Blender, we can determine this cut over the
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Figure 3.6: Length of offroad in Blender

offroad is 1656.4 units. Unfortunately it appears that the distance is a bit too long

for us to hop over effectively. This means we are going to have to find the optimal

path to cover exactly 1350.6 units of offroad with our hop. We can do this using

trigonometry. Using Blender to construe a right angle triangle, using a similar

method as above we can determine exactly where our path goes over the offroad.

While this figure may look correct, it is actually making an incorrect assumption

about the length of the opposite side to our unknown angle. We do not know its

exact length. Furthermore, due to the way this problem was setup, the length of

our adjacent angle will also be changing when we try to determine an appropriate

solution. A proper overview of the problem would actually look something like

this:

tan(x) =
1713.92

9987.9 − z
cos(x) =

z
1350.6
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Figure 3.7: Incorrect conditions to make system of equations

Unfortunately for us this is a really nasty system, but with a little of computing

power we are able to encounter 2 possible solutions:

x = 6.28319n + 0.195322

z = 1350.6 ∗ cos(6.28319n + 0.195322)

along with

x = 6.28319n − 2.99137

z = 1350.6 ∗ cos(2.99137 − 6.28319n)

From these two equations, we notices something interesting about the last term

in each sequence. Each of these terms are exactly π apart. Hence we can simply use
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Figure 3.8: Proper conditions to make system of equations

the first equation and add a +2πk to each term (albeit within the cosine term in the

second). We can then attempt to find a solution for this problem.

Let y be denoted as the angle between the horizontal base edge of length 1713.92

and our eventual path. We can determine from this that y = 90 − x due to the right
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angle presented in the only non-variable angle in the triangle. Ultimately solving

for y will give us our optimal starting alignment.

We can begin by letting n = 0, in turn letting x = .195. From here, we know

that z = 1350.6 ∗ cos(0.195) = 1324.919. This value then gives us a point where our

path will intersect with the vertical line of length 9987.92. We can then go back into

Blender and test this value and see how our hypotenuse approaches 1350.6.

Figure 3.9: Successful angle for the first alignment

As you can see, our hypotenuse is equivalent to exactly 1350.6, which is the

maximum distance our vehicle can travel over the offroad. This allows us to
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conclude that the best angle for our character to align at the beginning is 11.173

degrees to the right.

3.2.3 Calculating Duration of First Straight

Now we need to calculate exactly how long it takes for us to reach the edge of that

offroad before we start our first turn. To do this, we can start by calculating our

distance that we need to travel and make the assumption that it is fastest to go in

a straight line. We could do this using trigonometry again given we have all the

values to calculate it, but a much simpler way is using our model in Blender that

we already have.

From this we can see our distance for the first straight is 8830.91, which allows

us to then calculate how fast our vehicle will travel. It is important to note that

our rate of travel will be non-linear, as there are multiple factors at play here for

acceleration and deceleration. This sets us up well to use integration and derivation

to determine exactly how long this travel will take.

Referencing figure 2.5: Different start boosts and corresponding timing, we see the

different amounts and length of acceleration present from our start boosts. Lets

assume that it is more optimal to get the boost for the maximum length, as getting it

for any shorter period of time will result in less speed. This means we will be using

the values in the 6th row. Our boost length is 70 frames, which we can translate into

1.167 seconds of acceleration.

As for how much acceleration, we can use figure 2.1: All Acceleration types and

quantities to see exactly how strong our acceleration is. The start boost is classified

as a miniturbo boost, which means we accelerate at 3 u
f 2 . Combining this means for

the first 1.167 seconds, our vehicle accelerates at a rate of 3 u
f 2 .

While it was abbreviated in figure 2.1, the actual maximum speed of our vehicle

is 111.983u
f . From this, we can determine that it only takes 37.326 frames, or 0.622
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Figure 3.10: Exact length of the first straight

seconds for our vehicle to accelerate from 0u
f to its maximum boost speed of 111.98u

f .

Following the first 37.326 frames, we have 32.674 more frames remaining in our

boost which implies our vehicle will travel at 111.98u
f for another 0.545 seconds.

However, once that time ends, our vehicle does not continue to stay traveling at

111.98u
f . It begins to decelerate at a rate of 3 u

f 2 down to our maximum non-boost

speed of 95.393u
f . Once again using arithmetic we know this will take 16.590 frames

or 0.277 seconds.

After that deceleration, we do not need to worry about any more changes in



3.2.3 Calculating Duration of First Straight 33

speed for the first straight as we will just be in a wheelie until the first turn starts.

However, in order to calculate this distance we first need to determine exactly how

far our vehicle travels during the aforementioned periods of acceleration. We can

do this using integration.

Lets begin by creating an equation for modeling our distance D1 given our

acceleration and time t1. We can do this by double integrating our acceleration of 3

u
f .

D1 =
! t1

0
3 [dt1]2

D1 =
∫ t1

0
3t1 dt1

D1 =
3
2 t2

1

t1 = 37.326

D1 = 2089.845 units

For the next stage, it is actually quite simple. Our vehicle travels a constant

velocity over a set time, so to calculate D2 we just have to multiply them together.

D2 = 111.98t2

t2 = 32.674

D2 = 3658.835 units

As for the distance traveled during deceleration D3, we have to do integration

similar to how we calculated D1 except we actually have a non-zero starting speed

at t3 = 0. We can start by making an equation for the velocity v3 of our vehicle, and

then integrate it to get distance traveled.

v3 = 111.98 − 3t

D3 =
∫ t3

0
v3 dt3

D3 =
∫ t3

0
111.98 − 3t3 dt3

D3 = 111.98t3 −
3
2 t2

3
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t3 = 16.590

D3 = 1857.748 − 412.842

D3 = 1444.906 units

To get our total distance remaining D4, we can sum together all distances already

traveled and subtract that value from the total distance our vehicle needs to travel

before the first turn.

D4 = D − (D1 +D2 +D3)

D4 = 8830.910 − (2089.845 + 3658.835 + 1444.906)

D4 = 1637.324 units

Now that we have our final distance and have established our vehicle will travel

at a fixed velocity of 95.39u
f , we can calculate how much time (t4) our vehicle travels

in this segment by using basic arithmetic.

D4 = 95.39t4

1637.324 = 95.39t4

t4 = 17.165 frames

We actually have 2 final segments to calculate before we can say we finished

calculating the entire first straight. We need to determine how long the hop over

the offroad takes. Our fifth segment will be when the vehicle decelerates, and the

sixth will be when it is going a constant speed.

To calculate our deceleration we need to take some new values into account.

The maximum speed for our vehicle when not in a wheelie or boost is 82.950,

and the deceleration is 3u
f . Using these values and arithmetic we can determine it

decelerates for 4.148 frames or 0.0691 seconds. As for our sixth segment, we will

have to calculate it similarly to how we calculated the fourth segment above, where

calculating the previous segment distances will determine our remaining distance
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and then simple arithmetic will determine how much time it takes to travel the final

distance at a constant speed.

Here is how we can calculate the beginning deceleration.

v5 = 95.393 − 3t

D5 =
∫ t5

0
v5 dt5

D5 =
∫ t3

0
95.393 − 3t5 dt5

D5 = 95.393t5 −
3
2 t2

5

t5 = 4.148

D5 = 395.690 − 25.809

D5 = 369.881 units

As before, we can now determine the remaining distance to be 980.719u. Using

this value and our velocity v6, we can solve for the amount of time it takes to

complete the hop.

D6 = v6t6

980.719 = 82.950t6

t6 = 11.823 frames

To find our total time traveled t on the first straight, we just simply have to sum

all our times together for each segment (t1−6).

t = t1 + t2 + t3 + t4 + t5 + t6

t = 37.326 + 32.674 + 16.590 + 17.165 + 4.148 + 11.823

t = 119.726 frames

or

t = 1.995 seconds

With that, we not only have our optimal route for the first straight but calculations

for how long it would take to travel as well. Our next step is to calculate how the

path for our first turn.
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3.3 Optimizing the first turn on the track

Now that we have an actual point of entry here into the turn, we can start to think

of how exactly we want to take the turn. Immediately, we have several questions

we have to ask about the turn and how we want to take it. To simplify that, we will

put them into a list and answer each of them one at a time.

• Are there any obstacles we need to avoid?

• How many miniturbos can we get on this turn?

• At what point do we want to release our miniturbo(s)?

• Where do we want to align out of the miniturbo(s)?

While this may not seem particularly exhaustive, it does give us a good start

for determining an overall picture for how we want to take this turn. Lets try to

answer each of these questions, then calculate an optimal route.

3.3.1 Are there any obstacles we need to avoid?

Unfortunately on this turn there is a particularly annoying obstacle: the pipe. At

the end of the turn, there is a pipe ever so perilously placed in the offroad. While

this may not seem like an issue, it actually presents quite the conundrum when

verifying it with our hitbox. Since when our character drifts the hitbox rotates (or

rolls for those more technically inclined) in the direction it drifts. That means while

our vehicle may be driving on the road, it actually is leaning over the offroad. As

you can imagine, this means our vehicle may actually collide with the pipe while it

is on the main road! This means that should we attempt to go close enough to that

pipe in any optimal route, we will need to determine if any collision would occur

and adjust our path accordingly.
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3.3.2 How many miniturbos can we get on this turn?

This question is actually quite nuanced, but to start we should determine exactly

how these miniturbos are created. Our vehicle travels in the path of an arc, and

this arc can very in length and shape depending on the controller inputs. figure 2.5

Diagram of the joystick and its input range gives a good idea for exactly what inputs

can be used, but may not illustrate how these arcs the vehicles travel vary. One such

estimated representation can be seen in the figure below in context of the first turn.

Figure 3.11: Estimations of different arcs from drifting

For example, the topmost line is an example for what would happen if the stick

was permanently held the opposite direction of the drift, in this case left. Not only

does it take the character very wide, but as discussed earlier in Section 2.3.4 Drifting

and Mini-turbos, it also charges our miniturbo very inefficiently. This means that it

would take much more time to charge than if the stick was held farther to the right.

We can see an example of holding the stick ever so slightly to the right as the middle

line in the above figure. Not only does it charge the miniturbo at an optimal rate,

but it also is a significantly shorter path than the top arc. However, it does struggle

to stay as tight as possible, which is where our other arc comes in to play. It drives
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significantly tighter to the edge of the road, while also charging the miniturbo at the

same optimal rate that the middle arc does. However, it goes very tight to the turn

and ultimately drives into the offroad which is certainly much slower.

A combination of all these different arcs will be used, and there is no restriction

for holding the same stick position on the drift. For example, you can start the

turn holding your stick in the opposite direction and then afterwards hold it to

the other side. Something we can use to quantify this however is not only the

distance traveled during these drifts to give a possible range, but also the difference

in alignment out of them. To do this we can test it in the game to get the positional

data, then perform analysis.

3.3.3 Calculating Angular Rotation of a "Fail Drift"

While we are going to do the process with the 3 different drift types (stick positions

at -7, 3, and 7) we will start by calculating when the stick is in the opposite direction.

This means if the vehicle is turning right, the stick has an x-value of -7, and if the

vehicle is turning left it has an x-value of 7. Since we are keeping the stick position

the same (it is constant), we can assume that the arc representative of our vehicle’s

path is smooth and continuous.

3.3.3.1 Attempt 1: Calculating angular rotation using 3 consecutive coordi-

nate pairs

With this assumption, all we need is 3 coordinate pairs from 3 consecutive frames to

calculate change in angle. From this, we can use the miniturbo charge values to

determine how many frames the stick would have to be held in that position for the

miniturbo to charge, and that gives us our arc distance. Here are the 3 images:

From these 3 images, we now have 3 coordinates. We will denote them as

follows:
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Figure 3.12: Frame 1 of -7 stick position

Figure 3.13: Frame 2 of -7 stick position

pn = (x, y)

p1 = (−13801, 11885)

p2 = (−13832, 11807)
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Figure 3.14: Frame 3 of -7 stick position

p3 = (−13862, 11730)

Now lets verify these are correct by calculating the distance between each. The

distance should be equivalent to how much the vehicle travels for 1 frame traveling

at its fastest non-boost/wheelie speed, or 82.950 units.

D1 =
√

(p1x − p2x)2 + (p1y − p2y)2

D1 =
√

7045

D1 = 83.934

D2 =
√

(p2x − p3x)2 + (p2y − p3y)2

D2 =
√

7045

D2 = 82.638

While it is true that D1 , D2, we can ultimately chalk this off to precision error.

This is because we can only record positioning to the nearest whole unit, which

means we will have some slight error. In light of this, it would be poor practice to
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use this data due to the relative margin of error. Instead, we can model our arc in a

different manner using distance covered and starting/ending positions.

3.3.3.2 Attempt 2: Calculating angular rotation using 3 distant coordinate

pairs

It is important to note that due to floating point values, there still will be some

level of error present in these calculations. That being acknowledged, it would be

substantially less than the above method. In this example where we drift to the

right, fail drifting by holding our stick at the -7 position charges a miniturbo at 2

units of charge per frame. We also know we can use the miniturbo at 270 units of

charge (While technically we can only use it at 271, for simplicity sake we will use

270). This means we would be holding the drift for 135 frames, or 2.250 seconds.

Since we know we are traveling at a velocity of 82.950u
f , we can calculate the length

L1 of our arc as:

L = (135)(82.950)

L = 11198.250

From here, we can then find the starting/ending point. While there will still

be error in these values, it will be significantly less than our other method as this

method does not propagate the error repeatedly. On a minor note, due to some

bounces the drift in the game actually does not start entirely smoothly, so we will

be positioning our starting point on the 7th frame after landing. This means we can

still use figure 3.12 as our starting position. As for our new ending position, we can

use figure 3.15.

We also need a midpoint to determine the height of this arc. Since our velocity

relative to our position and rotation remains constant, we can determine the apex of

this arc is in the middle of travel, or on frame 31. Hence, we collect more data for

frame 31.
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Figure 3.15: Frame 61 of -7 stick position

Figure 3.16: Frame 31 of -7 stick position

Now we can start the math. We can start by finding the Cartesian distance

between our end points.

p1 = (−13801, 11885) our starting point
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p2 = (−14595, 9527)

p3 = (−15125, 7098) our ending point

C =
√

(P1x − P2x)2 + (P1y − P2y)2

C =
√

24668345

C = 4966.724

We ultimately need to calculate the height of the arc above this line segment.

One such way we could do this is to make an equation of a line that represents our

line segment, then make a line perpendicular to it that runs through the apex of the

arc. If we determine the length then of that line segment, we determine the height

of the arc and ultimately the angle. For starters, let us make an equation.

m = P1z−P2z
P1x−P2x

m = −4787
−1324

m = 3.616

y − P1z = m(x − P1x)

y − 11885 = 3.616(x − [−13801])

y = 3.616x + 61783.329

Now we want to make a perpendicular line to it, and eventually determine how

long it is between intersecting that line and the arc.

mp = −
1
m = −

1
3.616 = −0.277

P = (−14595, 9527)

y − 9527 = −0.277(x − [−14595])

y = −0.277x + 5490.772

Using both of our new equations we can find where they intersect using a basic

system of equations.
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y = 3.616x + 61783.329

y = −0.277x + 5490.772

0 = 3.893x + 56292.557

x = −14459.942

y = 3.616[−14459.942] + 61783.329

y = 9496.176

pi = (−14459.942, 9496.176)

Our last step is simply to calculate the final Cartesian Distance between the apex

of the arc and the point we just calculated.

D =
√

(p2x − pix)2 + (p2y − piy)2

D =
√

(−14595 − [−14459.942])2 + (9527 − 9496.176)2

D =
√

(−14595 − [−14459.942])2 + (9527 − 9496.176)2

D =
√

[−135.058]2 + 30.8242

D =
√

19190.782

D = 138.531

From here we can actually set up a system of equations to determine the radius

of the circle our arc is on. This will ultimately help us represent the path of the arc

mathematically. Below is a visual representation of our system of equations.

Immediately we note that our radius is already represented by the combination

of two line segments, x and D. This gives us a relatively simple equation for two

unknowns, x and our radius r. It may seem difficult to setup another equation, but

there is actually a pretty elegant solution for this. Fortunately we already know the

length of the chord C, which we can use in our final equation. We can form a right

triangle with our line segment x which happens to be perpendicular to our chord C.

From this we can set up our right triangle with legs of x and C
2 and a hypotenuse of

r. Since C
2 is a known constant, this equation also has the same two unknowns of
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our previous equation, which means we have a valid system! We can represent this

system as:

r = n +D

r2 = n2 + (C
2 )2

Now we can begin solving this system to determine our radius r.

r = n +D

r2 = n2 + (C
2 )2

let us square the first equation

r2 = n2 + 2Dn +D2

Use elimination to cancel out the r2 terms

r2
− r2 = n2

− n2 + (C
2 )2
− 2Dn −D2

0 = (C
2 )2
− 2Dn −D2

Substitute in our constant values

0 = (6167086.823) − 2(138.531)n − 19190.838

0 = 6147895.985 − 277.062n

n = 22189.604

Substitute back in to solve for r

r = n +D

r = 22189.604 + 138.531

r = 22328.135

And with that we finally have calculated our radius. Using this value, our next

step is to try and create an equation for our circle, so we need to find the center of

this circle. To do this we can add our radius r to our point p2 in the direction of pi.

Convert x into a vector

mp = −0.277
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r = 22328.135

Let our sides be of length a and 3.610a

22328.135 =
√

a2 + (3.610a)2

22328.135 =
√

14.033a2

22328.135 = 3.746a

a = 5960.528

This means our sides are of length -5960.528 and 21517.506

Combine to create our circle center Cx,y

cx,y = p2 + x̂

cx,y = (−14595 + 21517.506, 9527 + [−5960.528])

cx,y = (6922.506, 3566.472)

Now we have our circle center, we can finally create the equation for our circle

so we can begin to solve for curvature.

r2 = (x − x1)2 + (y − y1)2

22328.1352 = (x − 6922.506)2 + (y − 3566.472)2

Our final equation for the circle in Cartesian form can be written as:

498545612.578 = (x − 6922.506)2 + (y − 3566.472)2

While technically speaking it is not necessary to solve for the equation of this

circle, it helps a lot in illustrating the larger picture for the reader. From here we just

need to calculate how our vehicle’s angle changes over the 60 frames it traveled.

Since we know a circle is 360 degrees, and our circle is uniformly round, we can

conclude that the angle of rotation is proportional (in fact it is identical) to our

vehicle’s rotation in its path. Therefore we can just find our angle of rotation to

determine the vehicle’s rotation.

Let our angle of rotation be ∠a, then using the triangle we used earlier to calculate
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the distance from the chord to the circle’s center (it solved for the variable x), we

can solve for ∠ a
2 .

cos(∠a2 ) = n
r

cos(∠a2 ) = 22189.604
22328.135

cos(∠a2 ) = 0.993796

∠a
2 = 6.38571729907

∠a = 12.771 degrees

Finally we have managed to calculate the angle our vehicle turns over 60 frames.

However, we want to find how much is rotates each frame for our future calculations.

Using basic arithmetic, we know that this value ∠r = 0.213 degrees per frame.

While we have calculated this now for a specific position (holding it the opposite

direction of the drift), we still need to calculate this value for soft drifting and hard

drifting. Since we have already demonstrated our method for calculating this value,

we will forgo much of the explanatory text in between the calculations.

3.3.4 Calculating Angular Rotation for "Hard Drift"

We can once again start by displaying our data points for the hard drift calculations.

From these images we get the following points:

p1 = (212,−51)

p2 = (−610, 2231)

p3 = (465, 4399)

Using these points we can begin to calculate the radius of our circle that our

vehicle’s path arc lays atop. We start by making an equation for a line that passes

through p1 and p3 and calculate that distance.

C =
√

(p3(x) − p1(x))2 + (p3(y) − p1(y))2
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Figure 3.17: Frame 1 of hard drift

Figure 3.18: Frame 31 of hard drift

C =
√

(465 − 212)2 + (4399 − [−51])2

C =
√

2532 + 44502

C = 4457.186
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Figure 3.19: Frame 61 of hard drift

m = 4450
253

m = 17.589

y − y1 = m(x − x1)

y − (−51) = 17.589(x − 212)

y = 17.589x − 3779.854

Now that we have our chord formed, we need to determine the equation and

distance of the line segment perpendicular to the chord and passing through p2.

mp = −
1
m

mp = −0.0569

y − y2 = m(x − x2)

y − 2231 = −0.0569(x + 610)

y = −0.0569x + 2196.319

Set up a system of equations to determine where our two lines intersect
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y = 17.589x − 3779.854

y = −0.0569x + 2196.319

0 = 17.646x − 5976.173

17.6459x = 5976.173

x = 338.672

y = −3779.854 + 17.589(338.672)

y = 2177.049

pi = (338.670, 2177.049)

Next we calculate the distance between the point of intersection and p2.

D =
√

(p2(x) − pi(x))2 + (p2(y) − pi(y))2

p2 = (−610, 2231)

D =
√

([−610] − 338.670)2 + (2231 − 2177.049)2

D =
√

948.6702 + 53.9512

D =
√

902885.479

D = 950.203

Similar to how we solved the radius of the soft drift circle, we now use the same

system of equations to solve for the radius of the hard drift circle.

r = n +D

r2 = n2 + (C
2 )2

r2 = n2 + 2Dn +D2

r2
− r2 = n2

− n2 + (C
2 )2
− 2Dx −D2

0 = (C
2 )2
− 2Dn −D2

0 = (2228.593)2
− 2(950.203)n − (950.203)2

0 = 4966626.760 − 1900.406n − 902885.479

0 = 4063741.281 − 1900.4061n



3.3.4 Calculating Angular Rotation for "Hard Drift" 51

n = 2138.354

Substitute back in to solve for r

r = n +D

r = 2138.354 + 950.203

r = 3088.557

Using our earlier equation for the line perpendicular to the chord, and the length

of our radius r, we can solve for the center of our circle.

Let side lengths be of length a and 17.575a.

3088.557 =
√

a2 + (17.575a)2

3088.557 =
√

309.870a2

3088.557 = 17.603a

a = 175.456

This shows us we have side lengths of 3083.644 and 175.456

cx,y = p2 + δx, δy

cx,y = ([−610] + 3083.644, 2231 − 175.456)

cx,y = (2473.644, 2055.544)

Now we have all the pieces to make our equation of a circle which can be written

as the following:

r2 = (x − cx)2 + (y − cy)2

9539184.342 = (x − 2473.644)2 + (y − 2055.544)2

Our last step for this is to calculate angular rotation, which we can do by

discovering how far in degrees our vehicle traveled around the center of our circle.

Let our angle of rotation be ∠a, then using the triangle we used earlier to calculate

the distance from the chord to the circle’s center (it solved for the variable n), we

can solve for ∠ a
2 .
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cos(∠a2 ) = n
r

cos(∠a2 ) = 2138.354
3088.557

cos(∠a2 ) = 0.69235

∠a
2 = 46.184

∠a = 92.368 degrees

Angular rotation is 1.540 degrees per frame.

3.3.5 Calculating Angular Rotation of "Soft Drift"

Once again we are going to do practically the same thing with a different set of

coordinates which were observed following the same methods as previously, except

the stick position is now in place for a soft drift.

Figure 3.20: Frame 1 of a soft drift

From these images we get the following points:

p1 = (4419, 12824)

p2 = (2689, 12706)
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Figure 3.21: Frame 21 of a soft drift

Figure 3.22: Frame 41 of a soft drift

p3 = (1103, 13159)

Using these points we can begin to calculate the radius of our circle that our
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vehicle’s path arc lays atop. We start by making an equation for a line that passes

through p1 and p3 and calculate that distance.

C =
√

(p3(x) − p1(x))2 + (p3(y) − p1(y))2

C =
√

(1103 − 4419)2 + (13159 − 12824)

C =
√

(−3316)2 + 3352

C =
√

10995856 + 112225

C =
√

11108081

C = 3332.879

m = p3(y)−p1(y)
p3(x)−p1(x)

m = 335
−3316

m = −0.101

y − y1 = m(x − x1)

y − 12824 = −0.101(x − 4419)

y = −0.101x + 13270.431

Now that we have our chord formed, we need to determine the equation and

distance of the line segment perpendicular to the chord and passing through p2.

mp = −
1
m

mp = 9.899

y − y2 = mp(x − x2)

y − 12706 = 9.899(x − 2689)

y = 9.899x + −13912.411

Set up a system of equations to determine where our two lines intersect

y = −0.101x + 13270.431

y = 9.899x + −13912.411

0 = −10.000x + 27182.842
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10.000x = 27182.842

x = 2718.284

y = −0.101(2718.284) + 13270.431

y = −274.547 + 13270.431

y = 12995.884

pi = (2718.284, 12995.884)

Next we calculate the distance between the point of intersection and p2.

p2 = (2689, 12706)

D =
√

(p2(x) − pi(x))2 + (p2(y) − pi(y))2

D =
√

(2689 − 2718.284)2 + (12706 − 12995.884)2

D =
√

[−29.284]2 + [−289.884]2

D =
√

857.553 + 84032.733

D =
√

84890.286

D = 291.359

Similar to how we solved the radius of the soft drift circle, we now use the same

system of equations to solve for the radius.

r = n +D

r2 = n2 + (C
2 )2

r2 = n2 + 2Dn +D2

r2
− r2 = n2

− n2 + (C
2 )2
− 2Dn −D2

0 = (C
2 )2
− 2Dn −D2

Substitute in our constant values

0 = (1666.440)2
− 2(291.359)n − (291.359)2

0 = 2777020.607 − 582.718n − 84890.067

0 = 2692130.540 − 582.718n
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n = 4619.954

Substitute back in to solve for r

r = n +D

r = 4619.954 + 291.359

r = 4911.313

Using our earlier equation for the line perpendicular to the chord, and the length

of our radius r, we can solve for the center of our circle.

Let side lengths be of length a and 9.899a.

4911.313 =
√

a2 + (9.899a)2

4911.313 =
√

98.990a2

4911.313 = 9.949a

a = 493.63

This means our side lengths are 493.63 and 4866.444 respectively.

p2 = (2689, 12706)

cx,y = p2 + 493.63, 4866.444

cx,y = (2689 + 493.63, 12706 + 4866.44)

cx,y = (3182.63, 17592.444)

Now we have all the pieces to make our equation of a circle which can be written

as the following:

r2 = (x − cx)2 + (y − cy)2

4911.3132 = (x − 3182.63)2 + (y − 17592.444)2

24120995.384 = (x − 3182.63)2 + (y − 17592.444)2

To try and illustrate exactly what we have constructed, here is a diagram which

accurately depicts our calculations.

Our last step for this is to calculate angular rotation, which we can do by

discovering how far in degrees our vehicle traveled around the center of our circle.
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Figure 3.23: Graphical representation of soft drift calculations

Let our angle of rotation be ∠a, then using the triangle we used earlier to calculate

the distance from the chord to the circle’s center (it solved for the variable n), we

can solve for ∠ a
2 .

cos(∠a2 ) = n
r

cos(∠a2 ) = 4619.954
4911.313

cos(∠a2 ) = 0.94068

∠a
2 = 19.83461579

∠a = 39.66923158 degrees

angular rotation is 0.992 degrees per frame

3.3.6 Comparing Drift Paths

We have now determined exactly how our vehicle can travel in drifts. It can rotate

its trajectory by any of these amounts when starting or in a drift:

• hard Drift: 1.540 d
f (degrees per frame)

• soft Drift: 0.992 d
f
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• fail Drift: 0.213 d
f

From this information, along with the relevant circle radii calculated from earlier,

we can begin to visualize our vehicle’s capability on the first turn.

Figure 3.24: Diagram of vehicle paths with corresponding stick positions

Looking at this first turn now begs the question, what stick positions will we

be using for this first turn? While we certainly will be using hard and soft drift,

it is uncertain at this stage whether we would use any fail drifting. To determine

exactly how long we can fail drift and still stay on course, we need to determine 3

important factors:

• How long will we be in our drift for?
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• How many drifts can/will we do on the turn? (One way of mathematically

thinking about this is over the total distance traveled, how many times will

we be able to reach a miniturbo charge of 270)?

• Where do we plan to end our final drift and start our alignment into the next

turn?

Out of all 3 of these, the second is most easy to solve. We can solve with a rather

simplistic proof.

3.3.7 Calculating the quantity of drifts on the first turn

On the first turn charging only 1 miniturbo is strictly faster than any other quantity

of miniturbos.

Proof. Let us assume by contradiction that you can charge 2 or more miniturbos on

the first turn and it is faster. This means the turn must allow our vehicle to reach

270 charge (c) twice over its drift. We know there are 2 different ways to increase

charge depending on stick position:

• Stick is held in a fail drift (Input ranges -7 to 2) which increases charge value

by 2 every frame drift.

• Stick is held in a hard or soft drift (Input ranges 3 to 7) which increases charge

value by 5 every frame of the drift.

Immediately this presents us with two cases: one where the stick is permanently

held in fail drift, and the other where it permanently soft drift. With these two cases,

we can determine the total angle they must rotate to align properly for the next

turn. If this angular rotation is less than or equal to the vehicle’s rotation through

each respective process of charging 2 miniturbos or more, we can assume that it is

possible to charge 2 miniturbos with that method.
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Using the value calculated back in section 3.2.2, we can assert that our starting

angle is 11.173 degrees. Let ∠a be the angle of our vehicle after releasing its final

miniturbo. This means the total angular rotation during our vehicle’s drifts would

be p − 11.173, since we know that p must be a larger positive value than 11.173 (for

confirmation view figure 3.24).

If we are to claim that 2 miniturbos may be charged over this turn, we can

calculate the total angular rotation of our vehicle in both our aforementioned cases.

We can do this using the charge values referenced above, along with the calculated

angular rotation of each drift type in sections 3.3.3-5. With this in mind, we can

analyze our cases.

• Case 1: The stick is permanently held in a fail drift. Using our calculated

values, we can further analyze and determine our total angular rotation θ

when charging two miniturbos (neglecting miniturbo boost as this is a lower

bound and that would only increase the total angular rotation).

θ = 270(c)
2( c

f ) ∗ 0.213( d
f )

θ = 135( f ) ∗ 0.213( d
f )

θ = 28.755 degrees

This means that if we were to charge 2 miniturbos, our vehicle would rotate

2 ∗ 28.755 = 57.51 degrees. This would mean that p ≥ 68.683, which based

on figure 3.24 seems quite reasonable. However, something else the figure

highlights is that if we were to fail drift the entire time we would drive into

the offroad on the opposite side, which is certainly slower. Hence, this case is

invalid.

• Case 2: The stick is permanently held in a soft drift. Once again, similar to

case 1, we can calculate total angular rotation θ as follows:
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θ = 270(c)
5( c

f ) ∗ 0.992( d
f )

θ = 54( f ) ∗ 0.992( d
f )

θ = 53.568degrees

Following a similar logic, 2 miniturbos would rotate our vehicle at least

2 ∗ 53.568 = 107.136 degrees, making p ≥ 118.309. Once again, while it is

slightly closer it does appear that p could very well satisfy this value. That

being said, referencing figure 3.24 again, we note that holding a soft drift the

entire time would take the vehicle incredibly wide in comparison to combining

a soft and hard drift to try and stay as tight to the turn as possible. Furthermore,

we would have to delay releasing our wheelie substantially, and this simply is

not viable for a faster method.

• Now let us imagine a Case 3 where the stick positions are some combination

between hard and soft drift where each type of drift is used. We could assume

that θ > 107.136 since hard drift has a larger coefficient of angular rotation

(1.540 d
f ) than soft drifting (0.992 d

f ). Ultimately, even if we are able to take

the turn optimally tight, not only are we unable to ensure that the inequality

p ≥ 11.173 + θ would hold, but we would certainly delay our wheelie. Using

data collected earlier in section 2.3 we know it is faster to instantly release our

wheelie, hence why any Case 3 is also invalid.

• Finally, while this may seem redundant, lets assume a Case 4 where you do not

actually release a miniturbo (or technically you charge 0 miniturbos) because

you do not charge it all the way. Assuming you take the tightest path, it is

actually impossible not to charge it as p ≥ 11.173 + 54( f ) ∗ 1.540( d
f ) = 94.333,

which is a very reasonable value for p.

Since there is no possible case where charging 2 miniturbos would be faster than
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charging 1 miniturbo, we can assert that it is optimal to only charge 1 miniturbo on

the first turn. □

With this in mind, we can now safely assume we not only need to charge 1

miniturbo on the first turn, but we are also at no rush to do so as we are guaranteed

to have it completely charged before we rotate to the angle of 94.333 degrees.

3.3.8 Calculating where to release our miniturbo

Now that we know only to charge 1 miniturbo, we need to decide where to release

our miniturbo. Wherever we decide to release our miniturbo, our angular rotation

is reduced to 0 and we are forced to travel in a straight line until we begin the next

drift. With this in mind, there are 2 important factors to calculate this.

• How close can we maneuver around the pipe at the end of the first turn and

beginning of the second turn?

• Where do we want to begin our next drift?

While the first part of this is somewhat mundane, the second certainly is not.

In order to calculate this accurately, we would need to repeat the calculations in

section 3.3.7 for our second turn. Due to some extraneous calculations, we know

the exact entrance to our third turn so working backwards we can calculate the

exit of the second turn, and then determine our exact entrance to the second turn.

However, as that would require substantial amounts of computation and would

essentially require us to calculate the second turn entirely before we could finish

the first, we opt to make a few assumptions we cannot necessarily prove without

further calculations about this second turn. Let us assume this turn only allows for

1 single miniturbo. With this simple assumption (which we could surely prove with

a substantial amount of work), we can make more conclusions based on where we

want to start our drift into the second turn.
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For now however, let us go back to the pipes. For us we only need to worry

about the section of each pipe that is closet to the road and ensure we do not hit it.

For the first pipe, the closest edge is at the coordinates (-6699.59, 14889.30) and the

second pipe’s closest edge is at (79.59, 9860.72). While it may seem easy to just path

our vehicle to slightly avoid these pipes, we actually have to account for something

quite difficult: hitboxes.

Figure 3.25: First pipe and its most protruding edge

For reference as to what the hitbox looks like, figure 2.13 is a model representation.

The largest sphere out of all 5 present in our hitbox is the one at the front of our

vehicle which has a radius of 65 units. While it seems simple to make our release

point for our miniturbo then only 65 units away from the pipe, it is important to

note that our vehicle rotates vertically when it drives (technically called roll, similar

to an airplane). This means we need to make sure our vehicle does not rotate into

the pipe, so to do that we need to calculate exactly how far it rotates to the side

in a soft drift and hard drift. That being said, if we drive directly by the pipe in a

wheelie we can ignore this rotation and drive a fair bit closer.
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Figure 3.26: Second pipe and its most protruding edge

From data we collected from the game we know that in a hard drift our vehicle’s

axis of rotation is 30 degrees towards whichever side it is leaning. However, there

is no data or known way to know exactly how far it rotates in a soft drift. From

our limited observations it appears the rotation is linearly proportional to the stick

position such that if you multiply the stick value by 30
7 you are left with the vehicles

rotation with any given stick position. Using this logic, in a soft drift our vehicle

would rotate 3 ∗ 30
7 =

90
7 = 12.857degrees. Using this value and the dimensions of our

current hit box we can determine the length at which our hitbox extends when in

a soft drift. It is important to note that the axis of rotation lies directly below the

bike’s wheels as well.

Looking at the above figures, it is evident that our vehicle’s maximum width in

a soft and hard drift is 91.48 and 124.5 units respectively. This means that we can

make 2 equations for circles, one for the closest point to the road on each pipe, that

my vehicle cannot enter without leaning into it. This would allow us to determine
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suitable points for where to release our miniturbo and where to align. Lets start

by making equations for pipe 1 (p1) and pipe 2 (p2) for both soft (s) and hard (h)

drifting.

p1s : 91.482 = (x + 6699.59)2 + (y − 14889.30)2

p1h : 124.52 = (x + 6699.59)2 + (y − 14889.30)2

p2s : 91.482 = (x − 79.59)2 + (y − 9860.72)2

p2h : 124.52 = (x − 79.59)2 + (y − 9860.72)2

Again, we face a conundrum involving the second pipe. Since we have not

proved the drift will start with a soft drift or a hard drift, it is really challenging to

choose which equation we should use to determine where to start our second drift.

Because of this, let us assume the drift starts as a soft drift and we can use soft drift

circle equation to properly estimate our vehicle’s valid path options. Furthermore,

lets also assume a drift on the second turn would start as soon as the vehicle is

adjacent to the pipe. While this may seem like a stretch, it is actually quite realistic

based on historic performances on this track so such an assumption has some

credibility.

To properly illustrate what this represents graphically, figure 3.27 outlines not

only the soft drift circle equation but the prior turn as well.

However, in this diagram we do not exactly know what circle equation to use

for the first pipe. For example, if we are able to charge a miniturbo before reaching

the pipe it would be substantially faster to release it right next to the pipe in such a

way that you would not be in a drift when you pass it so you can drive tighter next

to it. This would result in the circle with radius of 65 which just so happens to be

the one in Figure 3.25. However, if the miniturbo cannot be charged by then we

would need to use a circle with a larger radius, which would be a bit slower as you

would need to go wider.
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Figure 3.27: Model of second straight with pipe collision boundaries

Since we know we are able to charge a miniturbo very on in this turn due to our

earlier calculations in section 3.3.7, we can safely assume that our miniturbo would

be charged by the time we reach the first pipe. With this in mind, we can begin to

calculate the direction we will need to travel on the second straight, as we need that

to determine the angle at which we release the second miniturbo. To determine this

angle, we need to find a line that is tangent to each circle on the path our vehicle

would take.

p1 : 652 = (x + 6699.59)2 + (y − 14889.30)2

p2s : 91.482 = (x − 79.59)2 + (y − 9860.72)2

| − 6699.59a + 14889.30 + c| = 65 ∗
√

a2 + 1

|79.59a + 9860.72 + c| = 91.48 ∗
√

a2 + 1

Used a systems of equations calculator, 4 solution pairs
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a = 0.713414, c = −10029.9

a = 0.770913, c = −9806.57

a = 0.736916, c = −10033.00

a = 0.746643, c = −9805.98

Find which solution is the proper tangent line

y = −0.770913x + 9806.57

Figure 3.28: Graphical representation of tangent line to both circles

Finally our last job here is to convert this slope into an angle ∠θ such that we can

have a final angle for our vehicle to be at when it releases its miniturbo.

m = −0.770913

Create a triangle with legs of length a and b

a = 1, b = 0.770913

tan(θ) = 1
0.770913

θ = 52.37 degrees

This angle however is from the bottom, so to determine the relative angle to our

original starting position we need to subtract it from 180

∠a = 180 − θ = 127.63 degrees
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Now that we have the angle to release our miniturbo, we need to calculate the

exact position at which to do so. This position is the one we calculate as tangent to

the pipe circle because it is the closest to the offroad we can release our miniturbo

and align for the next drift.

y = −0.770913x + 9806.57

652 = (x + 6699.59)2 + (y − 14889.30)2

Using the graph I already made, I can see the intersection quite easily

(−6660.245, 14941.039)

3.3.9 Determining our sequence of inputs for the First Turn

To start let us review our information. We have the starting position for our first turn

A (-12773, 12942) and our starting angle (11.173 degrees). We also have our ending

position B (-6660.245, 14941.039) and ending angle (127.63 degrees). Furthermore,

we have each of the angular rotation values for each type of drift (hard 1.540 d
f , soft

0.992 d
f , fail 0.213 d

f ) along with their corresponding charge values. Using all of this

information, we are going to attempt to optimize the shortest path from the start to

end point such that the vehicle rotates perfectly throughout its path to end with the

correct angle to exit the turn.

Immediately we can construct a circle that passes through both the starting

and ending points and is tangent to the tangent line calculated above. To do this

we can construct a perpendicular bisector between our two points and another

perpendicular line through the point touching the tangent line. Wherever these

two perpendicular lines meet must be the center of the circle. From there we could

calculate the radius with ease and we would have our circle, along with a distance.

First we construct our perpendicular bisector between points A and B using a

calculator.
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m = 14941.039−12942
−6660.245−−12773

m = 0.33

mp = −3.06

y = −3.06x − 15791.3372

Now we calculate a perpendicular line to our tangent line through B.

y = 1.297x + 23580.464

Combine the equations in a system to get the point

(−9036.447, 11860.192)

Finally calculate the distance between the center point and A to get the radius

r = 3890.005

With this radius we can attempt to calculate the distance of the arc in between A

and B. With this arc length we will have an upper bound for shortest distance and

time to take the turn meeting the conditions about exit point and trajectory.

Start by calculating the interior angle between the center point ∠C and points A and

B

∠C = 111.496 degrees

Next we can calculate the circumference

C = 2πr = 7, 780.01π = 24441.622

We now determine the portion of the circumference covered by our vehicle path to

determine the overall distance traveled.

111.496
360 ∗ 24441.622 = 7569.842

Finally we divide out the distance traveled by the velocity to determine how long it

takes our vehicle to travel on its path (t).

t = 7569.842
82.950 = 91.258 frames

Fortunately we do not need to check if this is between hard and soft drift because
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we know based on figure 3.25 that it lies between both of those arcs, hence this is a

valid path.

3.3.10 Optimizing our turn

Originally when I intended to do this step, I was going to run several simulations

using these equations to try and optimize a shortest theoretical route. In its current

state, it is really challenging to calculate distances traveled in increments considering

the path is curved. Something like a Fourier series could potentially work but

would require a large amount of setup. My last ditch effort was to attempt to model

distance traveled using kinematics.

We can start this by attempting to write out another massive system of equations

with the intent of optimizing one regarding distance.

Let a, b, and c be a real number representing the amount of frames our vehicle is in

a hard, soft, and fail drift respectively. Also let f be the total amount of frames that

elapse over the turn.

f = a + b + c

127.63 = (a ∗ 1.540) + (b ∗ 0.992) + (c ∗ 0.213) + 11.173

One major issue with this however is that the order of when you want to have

your stick in certain positions on the turn matters greatly. For example, if you start

a hard drift and then follow it up with a soft drift for the same length of time, you

will end up at a different position than if you were to start in a soft drift and then go

to a hard drift. That being said, regardless of order your angle will always be the

same, therefore the second equation above stands.

One potential modification we can attempt to do is to remove the fail drift portion

of the equation, as it would probably be unused anyways due to the sharpness of

the turn. That leaves us with a much more simplified setup:
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127.63 = (a ∗ 1.540) + (b ∗ 0.992) + 11.173

127.63 − 11.173 = 1.540a + 0.992b

116.457 − 0.992b = 1.540a

Using this system above and the equation for our baseline we could begin

iterations and optimization attempts, but some of the mathematics required for

it are incredibly complex and would take a substantial amount of computational

power or high level mathematical understanding.

3.4 Higher LevelMath

Most of the mathematics outlined above is rather fundamental, even if it is used in

rather unorthodox ways. This is largely due to the fact that most upper level math

surrounding shortest paths is incredibly complex, and much of it remains either

too difficult to utilize or even comprehend for an undergraduate level, or entirely

unsolved.

That being said, if we wished to attempt to utilize more advanced mathematics

there are two main routes we could attempt to follow. One of which would define

a minimum link path within a simple polygon, and the other for purely shortest

euclidean path. While neither of these are truly the most optimal, they do provide

more potential insight.

3.4.1 Minimum Link Path

We start this by prefacing the idea of a minimum length path. Imagine there is some

set of points s(start), d(destination) which lie within some simple polygon. We define

a simple polygon as a polygon which does not intersect itself or have holes. As seen

in figure _, we have a simple polygon with a start and destination point. However,

there is no direct line between the two such that the line is entirely contained within
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the simple polygon. The main goal of the minimum link path would be to secure

a polygonal path linking points s and d such that it lays within the bounds of our

simple polygon P and has the minimum amount of edges or vertices.

Figure 3.29: Example of starting and destination points on a simple polygon [10]

Ultimately this problem is quite complex. It’s application lends itself quite nicely

to game mechanics, since it is optimal for our vehicle to travel in straight lines any

minimum link path by definition would optimize our time in a wheelie. That being

said, these paths may also lead us wide and prove difficult to accurately follow due

to limitations in game movement. With all that accounted for, this could still be

incredibly valuable for determining an optimal path.

To begin solving the minimum link path we deal with the concept of visibility

polygons. For each of these, we imagine some sort of light that would expand out

from a certain vertex and try to describe the region it would cover within P. We

would then denote the boundaries of this visibility polygon as V. To mathematically

represent this, we would claim that for some point x ∈ P, the visibility polygon
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denoted by V(s) is the set of points visible from point s. We would also claim that

for all points within V(s), a line can be created within V(s) as follows:

V(s) = {z ∈ P|sz
⋂

P = sz}

Figure 3.30: Visibility polygon V(s) describing our white point s [10]

Once this has been established, we can attempt to expand our definition of

visibility polygons from vertices to edges for more broad use later. For some edge e,

we can describe V(e) as follows:

V(s) = {z ∈ P, y ∈ e s.t. zy
⋂

P = zy}

We will use this understanding to expand upon our path as the problem

progresses. Imagine we have a hypothetical line segment to use in our minimum

link path. To start identifying the next one, we would need to use this definition to

construct a visibility polygon from the line segment so we could determine the next

possible segment.
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We can begin to make assertions about V(e), and claim certain properties must

be withheld. One such lemma from Suri’s paper claims that V(e) must overlap

with an edge of P or it must be a chord separating P into 2 sub-polygons. With

our example shown in Figure 3.30, we can see if you exclude the northwestern

area outside V(e) that the 2nd part of the lemma would hold, therefore describing

V(e) as a subdivided polygon of P. However since that area remains it is clear V(e)

intersects an edge of P.

Now that we have established a classification for V(e) we need to find applications

for it. This leads into the idea of triangulation from Melhourn’s 1984 paper on multi-

dimensional searching [6]. He defines triangulation as "A triangulation of a vertex

set {v1, v2, ., vn} is a maximal set of non-intersecting straight line segments between

points in this set. A triangulation of polygon P is a triangulation of its vertex set

such that all the triangulating edges lie in P." With this definition we can construct a

dual graph G. We could link the vertices of G if and only if two triangles within T

share a side. Let the triangles that contain s and d be known as ts and td respectively,

and any path linking these two as Xs,d. T{1, k} represents the list of all triangles

within T.

If we were to actually construct a graph of G as outlined above we would create

a fully functional tree. The idea from here would be to use this tree to reach our

endpoint d as there must exist at least one path in our tree G that starts in our

triangle containing s and ends within d. With this method alone we have limited it

down to a finite set of possible solutions (albeit a large quantity), from what was

once seen as a problem with infinite possibilities. This is because assuming each

path can only pass through a specific triangle ti once, this leaves a finite amount of

possible paths through a finite quantity of triangles from our triangulation.

We could start this by computing the minimum number of links in a path for

each triangle tn ∈ T{1,k}. Eventually since td ∈ T{1,k} we would compute the minimum
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links, but we can show that these minimum links calculated have properties that

can be shared through a term defined as a window. A window w(e) we define

similarly to a visibility polygon except for an entire edge and shows the farthest

triangulation in T{1,k} that e can go through or onto. Say we have an edge e as our

first link in our minimum link path, it is then necessary to determine each triangle

tn that can be reached from this link.

With this in mind we can create an algorithm for determining a minimum link

path based on any regular polygon P, outlined in Suri’s paper. His algorithm goes

as follows:

1. Initialize our Visibility Polygon for our starting point V(s)

2. Determine window for e1 and farthest triangulation in T{1,k}

3. Loop following two steps until our ending point d ∈ ei

4. Compute V(ei)

5. ei < −w(ei−1)

6. Let di = di+1

7. Loop from i to 1

8. d j < − a point on e j such that d j + 1 lies within w(ei)

To simplify this algorithm, the idea is to lay edges such that they reach the

triangle closest to d within the visibility polygon of si. Once a complete link path is

formed, it becomes refined by traveling in the reverse direction in an attempt to

skip over any potential extra links.

One basic example we have of this can be seen below. We have triangulated our

polygon P by using only vertices of P, and from the dual graph we have created a
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corresponding tree. After this, we number the triangulations counting upwards for

each order away from D (for example, the farthest right triangle has order 2 as it is

2 triangles away from D).

Figure 3.31: Minimum Link Example Part 1

With the tree now made, we must recognize the visibility polygon from s, V(s).

With this we recognize that within V(s) we have the window w(e) outlined by

the green line. We determine this to be the window as it enters the lowest order

triangulation and is a chord of P within V(s).

We then repeat this step with the end point of w(e). While this may seem

arbitrary we actually choose it because our lowest order triangulation Td lies within

the visibility polygon centered at that point seen in the figure below.

Finally, we connect the final window to d and we have formed our path. We

now work backwards to determine the points that define our minimum link path.

This still does leave questions about how to calculate distance of triangles from

d along with algorithms for calculating V(ei) or W(ei). These methods are rather

complex and would be drawn out to explain but can be seen in Suri’s paper [10].
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Figure 3.32: Minimum Link Example Part 2

He outlines an additional algorithm for calculating V(ei) along with details of

triangulation ordering withing T{1,k}.

We could apply this to our first turn by creating a triangulation of our entire

course as P and compute V(s) from our vehicle’s starting point. However, looping

through all of the steps along with hundreds of calculations for windows and

visibility polygons would make this very exhaustive, but could be a next step for

this project.
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Figure 3.33: Minimum Link Example Part 3

Figure 3.34: Minimum Link Example Part 4



CHAPTER 4

Conclusion ofMathematicalModeling

4.1 Continuation ofModeling

Unfortunately due to the scope of this project I was unable to really explore each

of the following subsequent turns appropriately. We were also unable to truly

optimize it properly due to a lack of time to create the proper computer simulations.

That being said, I was successful in creating a formula that would allow for any

turn to be optimized. The steps would be as follows:

1. Calculate how many miniturbos can be charged feasibly. For each, long would

the distance traveled be to charge said miniturbo?

2. Identify the coordinate where the drift following the one you wish to calculate

will begin.

3. Determine the most optimal time to release miniturbo to properly align for

the next drift.

4. Using the start and end point of the drift, along with the tangent line to the

beginning of the next drift, create an equation for the circle the arc is on and

determine the distance traveled on that arc.

79
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5. Through Monte Carlo or reinforcement learning determine a large finite set of

possible paths and determine which has the shortest/least weighted path..

While this process is a fair bit complicated, it ultimately should not vary much

between any of the turns. We can start by giving a brief visual overview for all the

turns in a sequence, then we can show how each of the turns would vary in terms

of computation in comparison to our 1st turn:

Figure 4.1: Overview of All Turns in a Sequence

• Turn 2: This turn is almost exactly identical to Turn 1, however there is a pipe

at the beginning and end of the turn. All this means is that we would need to

slightly vary our start and end point to ensure that whatever our calculated
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Figure 4.2: Overview of Turn 2

path is would not drive through any of the pipes, rather as tight to them as

possible. We could do this simply be imagining a remodel of the track where

we remove all parts of the road where our vehicle could hit either pipe, and

then calculate the optimal path for the turn with the remaining road.

• Turn 3: This would largely be a difference in terms of the amount of miniturbos.

This turn it is possible to get 3 miniturbos out while remaining optimally

tight to the turn due to how long the turn is. This means that we would need

to calculate the change in velocity for each of the released miniturbos when

factoring in the distance our vehicle travels on the turn.

• Turn 4: This turn is incredibly tight, which means our stick position will be

all the way to the left for the entire duration of the drift to try and take it as

optimally as possible. This means using a hypothetical trajectory we would

then have to calculate only the position of the starting and ending points,

which would be relatively easy in comparison to any of the other turns.
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Figure 4.3: Overview of Turn 3

Figure 4.4: Overview of Turn 4



4.1. Continuation of Modeling 83

Figure 4.5: Overview of Turn 5

• Turn 5: We would have to recalculate how fast our vehicle turns here as

for a large duration of the turn it would be in a boost (or more precisely a

mushroom boost). This means we would need to calculate acceleration and

distance traveled in the shroom as well. Miniturbo calculations would not be

a problem, similar to turn 1, as the turn is so long we can easily charge one.

While it would be possible to charge two miniturbos, it would be impractical

because we would have to release one while we are in a boost, and since

accelerations do not stack this would be pointless.

• Turn 6: This is very similar to Turn 2 but with a twist. There are pipes on both

the beginning and back of the turn where we would remodel a road for the

vehicle, but also we would be primarily soft drifting due to the relatively small
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Figure 4.6: Overview of Turn 6

change in angle for the turn. This means our start and end points would be

determined by how far the vehicle travels while charging a miniturbo with a

soft drift, unlike any of the above problems. We would only need to calculate

the start point, the ending point would be derived naturally from that.

• Turn 7: Our final turn sort of combines it all together. There is a pipe which

we must avoid, an incredibly tight part of the turn at the beginning, along

with a boost panel at the end which applied the boost. While we can certainly

just remodel again to compensate for the positioning of the pipes, along with

assume the drift to be a hard drift, calculating a start and end point proves

challenging. We want to contact the boost panel relatively early as it greatly

accelerates us, but we would need to calculate how far we would need to go

out of the way to hit it optimally. To discover this, we would need to calculate

the turn angle of our vehicle when in a boost and wheelie, and then determine

how much it can change its angle for the duration of the boost so it can properly
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Figure 4.7: Overview of Turn 7

aim at the initial point for Turn 1 on lap 2. We would also combine it with the

distance between the initial point on the path and any point that touches the

nearest edges of the boost panel. This would likely involve another non-linear

system, but ultimately should not be too challenging to calculate.

With this laid out anyone can calculate this and find our total time to complete

one lap, however it would take a very large amount of time that the scope of

this Independent Study project was just unable to accommodate.
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4.2 Modeling other race tracks

There are 32 total tracks in Mario Kart Wii, and for this project we only focused

on one of them. The main reason we chose to focus on this one was because it is

relatively flat and simplistic, without a lot of worrying for an added dimension.

The removal of a dimension for elevated ground (commonly referred to as a z

coordinate) makes the project much more simple by itself, and that is one of

the several features which we would need to begin accounting for when we

start our calculations. That being said, the remaining 31 tracks are all much

more complex, some more so than others, but due to this complexity several

issues arise that would require substantially more complex mathematics and

calculations.

One such example is elevated edges. This is very prominent on Luigi’s

Circuit, which can be seen in the figure below. These elevated edges are

graphically represented by extruding the faces along the edge of the road, and

then beveling them partly. Not only would this add another dimension of

calculations, but it would also require us calculating distances along faces of

complex 3 dimensional polyhedrons.

Another example is tricking. Every other course in the game has tricking

involved, which certainly complicates things. Not only would we have to

calculate even more changes in velocity and angular momentum, but also

we would have to calculate air time. All tricks in the game result in air time

ranging from a couple seconds to several milliseconds. During this time we

would have to approximate our position function as a 3 dimensional vector,

and to compound this another layer of deceleration occurs for vehicles in

midair.

Those were just two of the most basic examples that are pretty widespread
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across each of the other courses in Mario Kart Wii, there are certainly many

more not mentioned here that an attentive reader can imply from some of

what was earlier written in Chapter 2.

4.3 Final Thoughts

This thesis strayed well from what was originally designed, but ultimately I am

very happy with the outcome of it. While there was not necessarily a large amount

of in-depth mathematics, there was a very substantial amount of computational

work that was done to make application of the mathematical theory possible.

There certainly is great room potential for continuation of this work, and I hope to

persevere through this project after graduation.
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